Quality issues in ABR recordings

Guy Lightfoot
ERA Training & Consultancy
Email: admin@eratraining.co.uk
www.eratraining.co.uk www.abrpeerreview.co.uk
Background

- **Davis & Bamford report 1997**
 - Made the case for universal newborn screening (OAE)
- **Preparation of protocols**
 - 1999 diagnostic ABR based on click ABR
- **National programme roll-out 2001 – 2006**
- **3-day ABR training course on ABR for all staff**
- **Development of suite of protocols (now “guidance”)**
 - Early Assessment overview
 - AC & BC frequency specific ABR & ASSR testing
 - ANSD & CM testing
 - Others, inc Tymp & VRA
 - Available at www.abrpeerreview.co.uk/resources.html
Background

• National database (eSP)
• Screen Includes:
 – Bilateral PCHI of moderate or greater degree (>=40dB averaged 0.5 to 4kHz)
 – ANSD in NICU/SCBU babies
• Screen Excludes
 – Unilateral PCHI (but will be detected)
 – Mild bilateral PCHI (some may be detected)
 – ANSD in well babies
• Referred babies should be assessed within 4 weeks
• Assessment to be completed by 8 weeks
Prevalence

PCHI Bilateral – 1.3 per 1000 births
 – 1.1 Congenital
 – 0.2 Acquired

PCHI Unilateral: - 0.8 per 1000

Progressive – inc CMV
 1.65 per 1000 by age 9 yr

ANSD ~ 0.1 per 1000
ABR Quality issues

• Despite comprehensive prescriptive guidance, several “serious untoward incidents” still occurred.
• Out of court settlements typically £1.5M (AU$2.8M).
• Series of QA audits were initiated from 2009.
• Audits have revealed:
 – National guidance sometimes ignored or misunderstood
 – Errors of test parameters
 – Errors of waveform interpretation
 – Errors of test strategy
 – Errors of reporting
 – Errors of case management
An example: Discharged but baby had a profound loss

• Errors:
 - “Auto” display gain (note Rt ear scales)
 - Far too lax an artifact rejection level
 - Tester stopped averaging when they felt a response was probably there (too few sweeps)
 - Very lax interpretation
 - Tester attitude: “I’ve been doing this for years; I don’t need a protocol to tell me what to do”
Errors of test parameters

• “Otoneurological” parameters used
 – e.g. 100Hz HPF: attenuates both noise & response, so responses close to threshold may not be recognised
 – e.g. epoch too short so responses close to threshold not recognised (esp low frequency)

• Hazardously high stimulus level with inserts in babies
 – 100dBnHL (clicks) = 120dBnHL in canal = >145dBpeakSPL

• Too few sweeps
 – e.g. <2000: excess noise compromises interpretation
 – now moving toward objective measurements to guide us

• Too lax an artifact rejection level
 – e.g. 15-20µV: excess noise allowed to contaminate the ABR
NHSP ABR Guidance for AR level

- 1999: (clicks) $\pm 10 - 25\mu V$
- 2001: (tone pips) $\pm 10 - 15\mu V$
- 2008: $\pm 5 - 10\mu V$
- 2010: (current) $\pm 3 - 10\mu V$ (default $5\mu V$)

- Example: 4k & 1k; 2000 sweeps, $\pm 5\mu V$, sleeping baby
But test conditions are not always ideal

• If 5µV creates excessive rejects, what do we do?
 – Wait! Most babies will settle
• What if they don’t?

• Options include:
 – Stick with 5µV and suffer +++ rejects (takes longer)
 – Increase to 7 or 10µV and accept noise into the average (but doubling noise requires 4 times as many sweeps – also takes longer)
• Which approach is the most time-efficient?
Study Design

• 26 typical babies referred from newborn screen
• Tested with NHSP recommended parameters
 – 4kHz 5-cycle tone pips at 49.1/s, 30 / 40dBeHL or at threshold / threshold +10dB
• “EEG” with ±40μV rejection and trigger pulses recorded onto data logger for off-line re-averaging
• 100, 3000-sweep (61.1s) epochs re-averaged using:
 ± 5μV
 ± 6.5μV
 ± 8μV
 ± 10μV (conventional + Bayesian averaging)
 ± 20μV (conventional + Bayesian averaging)
Bayesian Averaging?

• Adopt a more lax AR level
• Residual noise measured in each 100-sweep block
• Each block is weighted: 1 / residual noise
• Final average computed from weighted blocks

• Advantages:
 – Noisy periods have less destructive effect
 – Average is dominated by periods of lower noise

• Disadvantages:
 – No benefit if noise in each block is similar
 – Regular noise (e.g. cardiac activity) is not rejected
How should we measure “efficiency”?

• Test time was fixed (3000 sweeps @ 49.1/s = 61s)

• The most efficient rejection level will give the lowest residual noise in that time

• Residual noise is computed by the ABR system (Interacoustics Eclipse)

• But not all systems measure residual noise….
Noise & Rejection

Can use Rejection % as an index of noise
Results - 3 waveform noise categories
Conclusions of analysis

• In good (low noise) conditions ± 5µV is best
 • Around 2000 sweeps should be adequate
• In moderate noise conditions ± 5µV, 6.5µV & 10µV (with Bayesian) are joint best
 • But to preserve the SNR at 6.5µV ~3000 sweeps are needed
• In severe noise conditions ± 10µV Bayesian is best
• If Bayesian averaging not available, use 6.5µV or 8µV
 • But be prepared to do up to 5000 sweeps at AR= 8µV
• Bayesian averaging helps but is not perfect
A Strategy for testers?
Inspection of the data suggests:

- If ±6.5µV, Rejects <10% → Use ±5µV, 2000 sweeps
- If ±5µV, Rejects >30% → Use ±6.5µV, 2700-3400 sweeps
- If ±8µV, Rejects <10% → Use ±6.5µV, 2700-3400 sweeps
- If ±6.5µV, Rejects >30% → Use ±8µV, 3000-5100 sweeps
Summary of AR study

- Artefact rejection level affects test efficiency
- The optimum level depends on the extent of noise
- Testers should use a strategy which reflects this
- Use Bayesian averaging if available

Errors of interpretation

- “Old school” approach: a response is either there or it is not
- NHSP approach: not 2 but 3 possible outcomes
 - Response is present, with a high degree of certainty (NHSP terminology “Clear Response”, CR)
 - Response is absent, with a high degree of certainty (NHSP terminology “Response Absent”, RA)
 - Recording conditions too poor to tell (NHSP terminology “Inconclusive”, Inc)
- Inconclusive levels cannot contribute to the definition of threshold
Categorising waveforms: Clear Response - CR

- For a response to be deemed to be present there must be:
 - a high degree of correlation between the replications
 - a characteristic waveform of at least 40nV in size
- The size of the response - judged from top (wave V or wave III) to bottom (SN$_{10}$)- should be at least 3 times the amplitude of the background noise level
- The noise level can be estimated from average gap between the traces across the recording window
- This criterion ensures a high degree of confidence (about 98%) in the presence of an ABR response
Rating responses at each level: (2013 guidance)

Is there a clear ABR-like response? (>40nV and SNR >=3:1)

- NO

 Is the average gap between replications <25nV

 - NO

 Are the waveforms appropriately flat and without evidence of a response?

 - NO

 INC

 - YES

 RA

 - YES

 CR
Example – CR
Categorising waveforms
Response Absent - RA

- Superimpose waveforms
- Assess noise as the average gap between replicates over whole window (but ignore any region of stimulus artefact)
- Average gap must be no more than 25nV (0.025µV)
- Tip: the average gap is usually about 1/3 of the maximum gap
- The waveforms must be ‘appropriately flat’ with no evidence of a vestigial response
- This gives a high degree of confidence we are genuinely below threshold
Examples – RA

[Graph 1]

[Graph 2]

Scales: 2ms.div; 0.12uV/div
Categorising waveforms

Inconclusive - Inc

- All other waveforms are “inconclusive”
- the replications will have S/N < 3:1 or have no obvious response yet have noise greater than the criterion value
Examples - Inc
Consequences of labelling CR when no response is present

- Noise is mistaken for a response
- Discharge child with hearing loss
 - Worst-case: label a profoundly deaf child as normal
- Child is lost to follow-up
- Eventually discovered, too late
- Legal case could ensue
- Underestimate hearing threshold for a PCHI: under-amplification
Consequences of labelling RA when response is present

- Response is buried in noise
- Identify normal-hearing child as having hearing loss
- Overestimate hearing threshold for a PCHI: over-amplification
- Worst case: aid a child with normal hearing

Time for some howlers, interesting and difficult cases, all revealed in the QA process….
ABR Example 1 (Click) “>60dB”
ABR Example 2 (4k & 1k)
ABR Example 3 (4k) "=70"
ABR Example 4 (1kHz) “=80dB”
ABR Example 5 (1kHz) “≤65dB”
ABR Example 6 (4kHz) “=50dB”
Errors of test strategy

• Starting with the “wrong” ear
 – NHSP policy to start a unilateral referral with the passed ear (no test is perfect; it’s important to verify that at least one ear is satisfactory – language acquisition will be dominated by the status of the better ear)

• Poor stimulus level selection
 – reduces efficiency & scope of what is achieved in each test session
 – NHSP guidance: start at discharge level +10dB

• Failing to apply masking when needed

• Failing to perform BC testing (can’t rely on tymps)

• Failing to perform CM testing when needed
Errors of reporting

- Reporting e.g. $=65\text{dBnHL}$ instead of $\leq 65\text{dBnHL}$ when no “RA” is obtained
 - In theory the ear could be normal
- Not conveying limitations in test precision
 - Test conditions may have compromised results – this must be included in the clinical report
- Incorrect dBnHL to dBeHL correction
 - Corrections depend on frequency, age and transducer
- Transposing ears
 - Getting Rt & Lt ears mixed up; could lead to inappropriate amplification
Errors of case management

- Unnecessary delay in testing
 - ABR more likely to be problematic after 12 weeks
- Failure to follow-up when appropriate
- Failure to re-test possible ANSD cases
 - Many resolve (presumed delayed neurological maturation)
- Premature amplification or implantation in ANSD
Would we change our guidance?

• If all ABR systems offered objective measures there would be no need to replicate

• Instead of fixed number of sweeps, tester would average until appropriate to stop – in the *prevailing conditions*

• Fsp or SNR would help identify response presence & therefore when to stop averaging

• Residual noise would help identify when noise is low enough to conclude response absence

• Both CR & RA would still require tester judgement
 – CR: response morphology/size; RA no evidence of a response
Improving ABR standards

• Available options to facilitate improvement:
 – Require ABR testers to undergo certification (driving test)
 – Free “refresher” courses for all ABR testers
 – On-site visits to identify issues and initiate re-training
 – Close monitoring / mentoring of worst performing sites
 – Suspend service of sites resistant to change
 – Encourage the development of regional peer review groups, with national moderation & support
 – Introduce remote “tele-audiometry” ABR or on-line expert
 – Continue QA audits to monitor quality

• The talk tomorrow will reveal what NHSP did - and what they should have done but didn’t!
Many thanks for your attention!

www.eratraining.co.uk
www.abrpeerreview.co.uk